
Cascader: A Recurrence-Based Key Exchange
Protocol

Anders Lindman

Independent Researcher anders lindman@yahoo.com

Abstract. Cascader, a novel key-exchange protocol based on an iter-
ative multiplicative recurrence over a finite field, is introduced. In con-
trast to standard methods, e.g., traditional Diffie–Hellman and ECC, it
replaces exponentiation and scalar multiplication with layered products,
achieving commutativity and deterministic pseudorandom behavior.

1 Introduction

Cryptography has long relied on number-theoretic hardness assumptions like
the discrete logarithm problem. In contrast, this paper explores a new approach:
a key exchange built from a structured recurrence. The core idea is inspired
by iterated multiplicative transformations that resemble PRNG-like behavior.
The result is a system where two parties can arrive at the same shared secret
without direct key exchange — but using entirely different mathematics. We
call this method Cascader due to its cascading product structure and layered
computation.

2 Definition of the Recurrence

Let p be a large prime modulus (e.g. p = 2256 − 189). For any non-negative
integer e, let

e =

m−1∑
k=0

bk2
k, bk ∈ {0, 1}

denote its binary expansion, and let

I(e) = {k + 1 | bk = 1}

be the set of *1-based* indices of the set bits of e. Define

F (x, e) = x ·
∏

j∈I(e)

(
3j · 2

j(j−1)
2

)
mod p.

Equivalently, using the Kronecker delta,

F (x, e) = x ·
m−1∏
k=0

(
3k+1 · 2

k(k+1)
2

)bk
mod p (1)

This function is deterministic, modular, and composable, allowing two parties
to compute the same shared secret when used as described in the protocol.



3 Choice of Constant and Modulus

This section explains the pragmatic reasons for selecting the multiplier 3 and
the prime modulus:

MOD = 2256 − 189.

3.1 Multiplier 3

A small odd integer c is needed that is easy to multiply and at the same time
avoids trivial short cycles in the recurrence:

xn+1 = (c · xn) mod MOD.

– 3 is the smallest odd prime larger than 1, giving a low Hamming weight and
an efficient implementation.

– Because gcd(3,MOD) = 1, the multiplier is invertible, so the map is a
permutation of Z∗

MOD.
– Wolfram Alpha[1] confirms that 3 is a primitive root modulo MOD.

3.2 Modulus 2256 − 189

The prime:
p = 2256 − 189

was selected as p is very close to 2256, making modular reductions exploit the
size of the machine word, and because the multiplier 3 is a primitive root modulo
p.

3.3 Cardinality of the Output Space

Let the private exponent e be a 256-bit integer. The size of the input space (the
number of possible private keys) is therefore 2256. The outputs of the function
F (SEED, e) are elements of the multiplicative group Z∗

p, which has a size of
p− 1 = 2256 − 190.

Pigeonhole Principle and Inevitable Collisions. Since the size of the input space
(2256) is larger than the size of the output space (2256 − 190), the pigeonhole
principle dictates that the function e 7→ F (SEED, e) cannot be injective. There
must be collisions; that is, there must exist distinct private keys e1 ̸= e2 such
that F (SEED, e1) = F (SEED, e2). At least 190 such collisions are guaranteed to
exist across the entire key space.



Expected Coverage. While perfect injectivity is impossible, a desirable crypto-
graphic property is that the function’s output ‘image‘ covers a large fraction of
the codomain. If we heuristically model F as a random function mapping inputs
to outputs, the number of distinct output values is expected to be very close to
the size of the output space, p− 1. The key security assumption is that finding
such collisions is computationally infeasible. The existence of a small number
of guaranteed collisions over a vast key space does not, in itself, constitute a
practical attack, though it underscores the importance of the collision resistance
property discussed in Section 8.

3.4 The primitive-root property of 3

Having 3 being a primitive root modulo p does not force the full Cascader recur-
rence to cycle through all p − 1 residues. Nevertheless, the property still yields
useful guarantees.

– Invertibility. The single-step map x 7→ 3x mod p is a permutation of F∗
p;

hence every partial product inside the recurrence is non-zero and invertible.
– Large order of factors. Each factor 3j ·2j(j−1)/2 has order at least that of

3, ensuring that the contribution of every bit position is highly non-trivial.
– Empirical uniformity. Preliminary statistical tests show that the final

outputs are uniform, although the exact period remains unknown.

In short, the primitive-root status of 3 guarantees strong diffusion without
promising a full period, and empirical evidence supports the practical adequacy
of the choice.

3.5 Summary

The pair (c,MOD) = (3, 2256 − 189) was chosen as adequate for a proof-of-
concept. Future work will investigate alternative small multipliers and formally
bound the statistical quality of the resulting sequences.

4 Pseudocode Description

Below is the algorithmic description of the key exchange function:

5 Key Exchange Protocol

Cascader works as follows:
- Alice computes her public key: A = F (SEED, a)
- Bob computes his public key: B = F (SEED, b)
- Alice computes shared secret: SA = F (B, a)
- Bob computes shared secret: SB = F (A, b)
From the structure of F (x, e), we observe empirically:



Algorithm 1 linearRecurrence(base, exponents)

Require: MOD is a global constant modulus
1: result← base
2: exp← 1
3: while exponents > 0 do
4: if exponents mod 2 = 1 then
5: mult← 1
6: for i← 0 to exp− 1 do
7: result← (3 · result ·mult) mod MOD
8: mult← mult≪ 1 ▷ Multiply by 2 via bit shift

9: exponents← exponents≫ 1
10: exp← exp+ 1

11: return result

F (F (SEED, a), b) = F (F (SEED, b), a)

This allows both parties to compute the same shared secret, enabling secure
communication.

6 Time Complexity Analysis

Let n denote the bit length of the private exponent (here n = 256) and let b be
its Hamming weight.

Loop structure. The outer while loop iterates once for every bit of the exponent,
yielding Θ(n) iterations. Inside this loop, a set bit at 1-based position j triggers
an inner loop that runs j times. The total number of inner-loop iterations is
therefore the sum of the positions of the set bits in the exponent,

∑
j∈I(e) j.

Expected cost. For a uniformly random n-bit key, the expected Hamming weight
is E[b] = n

2 , and the set bits are distributed across the range [1, n]. The expected

sum of bit positions is
∑n

j=1 j · P(bit j − 1 is set) =
∑n

j=1
j
2 = n(n+1)

4 . The
complete running time is therefore dominated by the inner-loop multiplications,
leading to an expected-time complexity of:

E[T (n)] = Θ(n2).

For n = 256, this results in a notable number of modular multiplications, con-
firming that the protocol is computationally intensive.

7 Commutativity Proof

We now prove that the protocol correctly establishes a shared secret, i.e., that
SA = SB . The property relies on the commutativity of modular multiplication.



Let the shared base be x = SEED, and let Alice’s and Bob’s private keys
be a and b respectively. Let their corresponding 1-based index sets be I(a) and
I(b).

Define the product factor for an exponent e as:

P (e) =
∏

j∈I(e)

Cj (mod p), where Cj = 3j · 2
j(j−1)

2

From the definition in Section 2, the function F can be written as F (x, e) =
x · P (e) (mod p).

Alice computes her public key A = F (x, a) = x·P (a) (mod p). Bob computes
his public key B = F (x, b) = x · P (b) (mod p).

Next, they compute the shared secret:

– Alice computes SA = F (B, a) = F (x · P (b), a) =
(
x · P (b)

)
· P (a) (mod p).

– Bob computes SB = F (A, b) = F (x · P (a), b) =
(
x · P (a)

)
· P (b) (mod p).

Since multiplication in the finite field Zp is associative and commutative, we
have:

SA = x · P (b) · P (a) = x · P (a) · P (b) = SB

This proves that both parties arrive at the identical shared secret, so the protocol
is correct.

8 Security Intuition

The security of the proposed key exchange algorithm, similarly to established
public-key cryptosystems like Diffie-Hellman, fundamentally relies on the com-
putational difficulty of certain number-theoretic problems. Our design aims to
construct a function that behaves as a one-way function—easy to compute in one
direction but computationally infeasible to reverse—while also ensuring strong
collision resistance.

8.1 Commutativity for Shared Secret Derivation

The functional correctness of the key exchange, ensuring that Alice and Bob
derive the same shared secret, stems from the commutative property of the
underlying modular multiplication. Let F (base, e) be the function that generates
a public key from a given base and a private exponent e. Our construction
yields a property analogous to F (X,Y ) = X · P (Y ) (mod p), where P (Y ) is
a factor derived from Y . Given this, the shared secret derivation is inherently
commutative:

SharedSecret = F (F (SEED, alicePrivate),bobPrivate)

= F (F (SEED,bobPrivate), alicePrivate)

This ensures that the protocol achieves its functional goal regardless of other
security properties.



8.2 One-Wayness and Injectivity

For the algorithm to be cryptographically secure, merely achieving functional
correctness is insufficient. The function F (SEED, e) must also exhibit properties
that prevent an adversary (Eve) from deriving secret information from publicly
available data.

One-Way Function Property The primary security pillar is that F (SEED, e)
must act as a one-way function. That is, given the public base SEED and the
public key F (SEED, e), it should be computationally infeasible for Eve to recover
the private exponent e. This difficulty is analogous to the Discrete Logarithm
Problem (DLP) which underpins the security of classic Diffie-Hellman, where
it is hard to find x given gx (mod p). If F were easily invertible, Eve could
determine Alice’s private key from her public key, thus immediately computing
the shared secret.

Injectivity and Collision Resistance Beyond one-wayness, the design strives
for strong injectivity. This means that each distinct private exponent e should
ideally map to a unique public key F (SEED, e). In other words, if e1 ̸= e2,
then F (SEED, e1) ̸= F (SEED, e2). The failure to achieve injectivity implies the
existence of collisions, where F (SEED, e1) = F (SEED, e2) for e1 ̸= e2. Our
design attempts to establish this injectivity and resistance to collisions through
the carefully constructed multiplicative factors Cj :

Cj = 3j · 2j(j−1)/2 (mod p)

The use of polynomially varying exponents (j and j(j − 1)/2) for each bit posi-
tion j was intended to create a unique ”signature” or ”contribution” for each bit.
This aims to enforce a form of multiplicative independence among the Cj val-
ues, such that no non-trivial subset of Cj factors would multiply to 1 (mod p).
Conceptually, this is akin to ensuring that the contributions of each bit are
”orthogonal” in the multiplicative group, making it exceptionally difficult for
different combinations of bits (private keys) to yield the same public key.

8.3 The Challenge of Structured Hardness

While the intention behind the structured exponents is to guarantee distinctness
and prevent trivial collisions, the very presence of this mathematical structure
presents a significant cryptographic challenge. Unlike problems based on purely
random elements, the predictable relationship within Cj may be exploitable by
advanced cryptanalytic techniques, such as those involving lattice reduction al-
gorithms. These attacks aim to find non-trivial linear (or, in this case, exponent-
based) relations among the structured elements that sum to zero, which could
correspond to finding collisions or inverting the function.



8.4 Empirical Observations and Formal Proofs

Initial empirical tests, such as plotting the output distributions and standard
statistical randomness tests (e.g., Monobit and Runs tests), show that the func-
tion produces outputs that are statistically indistinguishable from random noise.
For instance, in a sample of 1,000,000 bits:

– Monobit Test: ones: 499,950; zeros: 500,050; χ2 p-value: 0.9950
– Runs Test: observed runs: 499,672; expected runs: 500,001.0; z-score: -0.658
– Serial Correlation: flip rate: 0.4997 (ideal 0.500)

These results confirm the excellent statistical properties and uniformity of the
generated sequence. However, it is crucial to emphasize that passing statistical
randomness tests, while necessary, does not directly imply cryptographic unpre-
dictability or resistance to specific structural attacks. The true security relies
on the unproven computational hardness of the underlying mathematical prob-
lem, specifically the hardness of inverting F (SEED, e) or finding collisions, given
the structured nature of the Cj terms. A rigorous cryptographic proof of this
hardness against all known attacks remains an essential area for future work.

9 Security Analysis and Proof Status

9.1 Proof of Correct Functionality

Definition 1 (Correctness). The Cascader key-exchange protocol is correct
if for all private exponents a, b ∈ {0, 1}256 the two parties compute the same
shared secret:

F
(
F (SEED, a), b

)
= F

(
F (SEED, b), a

)
.

Theorem 1 (Commutativity). Cascader is correct in the sense of Defini-
tion 1.

Proof. Immediate from the commutativity of modular multiplication in Zp and
the structure of the product in (1), as formally shown in Section 7.

9.2 Security Reduction to Discrete Logarithm

We now present a security argument suggesting that the function F (x, e) used
in the key exchange protocol is at least as hard to invert as the standard mod-
ular exponentiation function, whose security rests on the well-known discrete
logarithm problem (DLP).



Function Definition Let p = 2256 − 189 be a prime modulus. Define the
function:

F (x, e) = x ·
n∏

k=0

αbk
k mod p,

where e =
∑n

k=0 bk2
k is the binary representation of e, and:

αk = 3k+1 · 2
k(k+1)

2 mod p.

Each bit bk ∈ {0, 1} determines whether the term αk is included in the product.
The base value x (e.g., the shared SEED) is multiplied into the final result.

Modular Exponentiation as a Special Case Consider the standard modular
exponentiation function:

ModExp(g, e) = ge mod p.

We now show that modular exponentiation is a special case of F (x, e).

Let x = 1 and choose αk = g2
k

mod p for some generator g ∈ Z∗
p. Then:

F (1, e) =

n∏
k=0

αbk
k =

n∏
k=0

(g2
k

)bk = g
∑n

k=0 bk2
k

= ge mod p.

Thus, modular exponentiation is a special instance of F under specific αk values.

Reduction Argument Suppose there exists an efficient algorithm A that,
given x and F (x, e), can recover e.

Then, for any modular exponentiation instance ge mod p, we can define:

αk = g2
k

mod p, x = 1.

So F (1, e) = ge mod p, and we can recover e using A. Hence, A would solve the
discrete logarithm problem.

This contradicts the assumed hardness of DLP, which underlies the security
of the Diffie–Hellman key exchange and other cryptographic systems.

Strength of Actual αk In our construction, each αk is defined as:

αk = 3k+1 · 2
k(k+1)

2 mod p,

where 3 is a primitive root modulo p, and the exponential growth of both com-
ponents increases entropy and resists optimizations that exploit structure (e.g.,
lattice attacks, meet-in-the-middle).

This additional complexity makes the inversion problem potentially harder
than standard DLP.



Conclusion Since modular exponentiation is a special case of F (x, e), and
the actual structure of F introduces additional multiplicative complexity and
obfuscation via αk, we conclude:

Inverting F (x, e) is at least as hard as solving the discrete logarithm
problem in Z∗

p. Therefore, F inherits the one-wayness and security prop-
erties of modular exponentiation.

9.3 Heuristic Arguments in the Random-Oracle Model

Assumption 1 (Cascader). The function SEED 7→ F (SEED, e) behaves like a
random oracle: for any e ̸= 0 the value F (SEED, e) is uniformly distributed in
Zp and independent of all other queries.

Theorem 2 (ROM security). Under Assumption 1, the Cascader key ex-
change is indistinguishable from an ideal key-exchange protocol in the random-
oracle model.

Proof (Proof sketch). The shared key S = F
(
F (SEED, a), b

)
= F

(
F (SEED, b), a

)
is the output of the random oracle on the unique input (SEED, a, b); hence it is
uniform and independent of the public keys A and B.

Remark 1. Theorem 2 is not a reduction, because Assumption 1 itself lacks
justification from a standard hard problem.

Feature Cascader Modular Exponentiation (DH)

Core Operation Layered product recurrence ga mod p

Complexity (n=bit length) O(n2) O(n)

Known Hardness Assumption None (Novel Problem) Discrete Log Problem

Inversion Method No known shortcut Well-known algorithms

Shared Secret Agreement Yes Yes

Interoperability No No

Novelty High Standard

Table 1. Comparison of Cascader with traditional modular exponentiation.



Aspect Cascader ECC (X25519)

Primitive Iterative product Scalar mult. on curve

Hard problem None (Novel Problem) ECDLP / ECDH

Key size 256-bit priv. / 256-bit pub. 256-bit priv. / 256-bit pub.

Compute cost (n=bit length) Θ(n2) Θ(n)

Side-channel High (bit-dependent loop) Constant-time (Montgomery ladder)

Hardware accel. Future applicability Widely available

Standardisation None RFC 7748, TLS 1.3, WireGuard

Table 2. Cascader versus X25519 for 128-bit classical security.

Summary Cascader’s merit is the novelty of the construction and the potential
for different security aspects compared to know key exchange protocols. Poten-
tial downsides include: slower than standard key exchange protocols, lack of a
recognized hardness assumption, and no constant-time guarantees.

10 Open Problems and Future Work

Here are several directions for future exploration:

1. Can this recurrence be inverted efficiently?
2. What is the entropy and coverage of the output space?
3. Is it resistant to cryptographic attacks or side-channel analysis?
4. Can it be used as a slow KDF or commitment scheme?
5. Can it be optimized using precomputed layers or parallelization?
6. Could it form the basis of a hash chain or proof-of-work system?

11 Conclusion

We introduced Cascader, a recurrence-based key exchange protocol that consti-
tutes a novel approach compared to standard cryptographic primitives. While
not aimed at performance-critical environments, it opens up new directions in
public-key protocols.

References

1. Wan Mohd Rosly, Wan Nur Shaziayani, Sharifah Sarimah Syed Abdullah, and
Fuziatul Norsyiha Ahmad Shukri. The uses of Wolfram Alpha in mathematics.
Teaching and Learning in Higher Education (TLHE), vol. 1, 2020, pp. 96–103.



A Reference Implementation in JavaScript

Below is a JavaScript implementation of the recurrence-based key exchange al-
gorithm described in this paper. This reference code demonstrates the core func-
tions for the protocol.

const KEY_SIZE_BITS = 256n;

const MAX_INT = 1n << KEY_SIZE_BITS;

const MOD = MAX_INT - 189n; // Prime number

const SEED = MAX_INT / 5n;

function linearRecurrence(seed , exponents) {

let result = seed;

let exp = 1n;

while (exponents > 0n) {

if (exponents % 2n === 1n) {

let mult = 1n;

for (let i = 0; i < exp; i++) {

result = 3n * result * mult % MOD;

mult <<= 1n;

}

}

exponents >>= 1n;

exp ++;

}

return result;

}

// Generate a random 256-bit BigInt

function random256BitBigInt () {

const array = new Uint8Array (32);

crypto.getRandomValues(array);

let hex = '0x';
for (const byte of array) {

hex += byte.toString (16).padStart(2, '0');
}

return BigInt(hex);

}

const alicePrivate = random256BitBigInt ();

const bobPrivate = random256BitBigInt ();

const alicePublic = linearRecurrence(SEED , alicePrivate);

const bobPublic = linearRecurrence(SEED , bobPrivate);

const aliceShared = linearRecurrence(bobPublic ,

alicePrivate);

const bobShared = linearRecurrence(alicePublic , bobPrivate);



console.log("Alice private", alicePrivate.toString ());

console.log("Bob private", bobPrivate.toString ());

console.log("Alice public", alicePublic.toString ());

console.log("Bob public", bobPublic.toString ());

console.log("Alice Shared", aliceShared.toString ());

console.log("Bob Shared", bobShared.toString ());

console.log("Alice's and Bob's shared secrets equal?",

aliceShared === bobShared);

Listing 1.1. Recurrence-Based Key Exchange in JavaScript


	Cascader: A Recurrence-Based Key Exchange Protocol

